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1 Introduction
These notes are based on some study notes I took during the program Big Ideas in Dynamics

to better understand the paper Fubini foiled: Katok’s paradoxical example in measure theory, by
John Milnor [7]. In this paper, Milnor explains the construction of an example of a foliation F of
the square (0, 1)× [0, 1] and of a measurable set E on the same square, such that: the Lebesgue
measure of E is 1, but each leaf of F intersects E in at most one point. As we are going to point
out, this implies that the foliation F fails to satisfy the property of absolute continuity.

The main goal of these notes is to help someone who is trying to understand these topics for
the first time. Therefore, I believe it is important to point out some references I followed: of
course, the original paper [7] by Milnor, which is extremely well-written; next, and I believe this
is a good reference for several topics in Dynamical Systems and Ergodic Theory, we followed
the post Fubini Foiled on Vaugh Climenhaga’s Math Blog; finally, for those who can read math
in Portuguese, the master’s dissertation [8] of Marcielis Espitia Noriega from UNICAMP, named
Ergodicity of Anosov diffeomorphisms of class C2. There, she not only explains the construction
we are dealing with but also makes a good introduction to Hyperbolic Dynamics and proves
Hopf’s Argument.
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It is also very important to thank Davi Obata for his patience and explanations during office
hours and via emails, Kate Holmes, Homin Lee, and Zihan Xia for studying together during the
program, and finally Benjamin Call and Noelle Sawyer for organizing this very nice program!

One last thing before we begin with the math: this text may contain errors! If someone
finds anything, I would love to be contacted so that I can correct it. I can be reached at
odylocosta@gmail.com.

2 A brief introduction to foliations
In this Section, we give a brief introduction to foliations. It is a piece of Chapter 2 of my

master’s dissertation [3], named Unique ergodicity of the horocycle flow via hyperbolic dynamics
and we follow mainly [1].

Throughout the Section, (M, g) will be closed (compact without boundary) and connected
Riemannian manifold.

2.1 Flows
A flow is a map φ : R×M →M satisfying:

• φ(0, x) = x for all x ∈M ;

• φ(s, φ(t, x)) = φ(s+ t, x) for all x ∈M and s, t ∈ R.

Unless we explicitly say otherwise, we will always assume the flow φ to be of class Cr, with
r ≥ 1. In particular, for each t ∈ R, the map φt : M →M defined by φt(x) = φ(t, x), always
is of class Cr.

The existence of flows on manifolds is intimately related to the existence of vector fields, as
the next example tells us.

Example 1 (Flows and vector fields). Consider a vector field X ∈ Xr(M). Then, the Fun-
damental Theorem of ODE’s guarantees that, through each point p ∈ M , the initial value
problem {

x′(t) = X(x(t))

x(0) = p

admits a unique solution γp : R → M . Moreover, the map φ : R × M → M defined by
(t, p) 7→ γp(t) is a flow of class Cr such that

∂φ(t, p)

∂t
= X(φ(t, p)).

Reciprocally, to each flow φt on a manifold M , there is a vector field X that it integrates:
one just has to define X(p) = X(φ0(p)) =

∂φ(0,p)
∂t

, for each p ∈M .
A general statement, as well as a proof, of the Fundamental Theorem of ODE’s can be found

in [6], as Theorem 9.12, p. 212. Also, the fact that flows on compact manifolds are complete, i.e.,
are well-defined over R, is proved in the same text: see Corollary 9.17, p. 216.
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We now give a concrete example of a flow on a compact manifold. To do so, we explicit the
construction of the quotient Tn = Rn/Zn. Define, on Rn, the following equivalence relation: we
say two points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn are equivalent if and only if their
difference is an integer vector. More explicitly,

(x1, . . . , xn) ∼ (y1, . . . , yn) ⇐⇒ (x1 − y1, . . . , xn − yn) ∈ Zn.

We denote by [x] or [(x1, . . . , xn)] the equivalence class of the point x = (x1, . . . , xn). Finally,
we define Td to be the quotient of Rn by this equivalence relation: Tn = Rn/Zn.

Note that Tn is an abelian group with the operation:

[(x1, . . . , xn)] + [(y1, . . . , yn)] = [(x1 + y1, . . . , xn + yn)].

Example 2 (Linear flow on Tn). Let θ = (θ1, . . . , θn) ∈ Rn be a fixed vector and let Tn = Rn/Zn

be the n−dimensional torus endowed with the volume measure µ. Define the linear flow φt on
Tn in the direction of θ as the map φt : Tn → Tn such that to each [x] = [(x1, . . . , xn)] ∈ Tn

associates
φt(x) = [x+ tθ].

In this example, the linear flow φt is the solution of the following ODE on Tn:

dx

dt
= θ.

As a general goal in Dynamical Systems, given a flow φ on M , we want to know what
happens to its orbits:

Oφ(x) := {φ(t, x) ∈M | t ∈ R},

for each x ∈M .
Since we are mainly dealing with invertible systems, it makes sense to break the orbit of each

point x ∈M into two subsets: the positive semi-orbit and the negative semi-orbit by the flow φ.
Respectively, they are defined as follows:

• O+
φ (x) := {φ(t, x) ∈M | t ≥ 0};

Figure 1: The flow φt(x) = [x+ tθ] on T2 = R2/Z2.
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• O−
φ (x) := {φ(t, x) ∈M | t ≤ 0}.

With these definitions, Oφ(x) = O−
φ (x) ∪ O+

φ (x).
If, for a point p ∈ M there exists a time T ∈ R such that φT (p) = p, we call the point p a

periodic point for φ. Also in this setting, and we say the orbit of p is closed and if τ ∈ R is such
that φτ (p) = p and for all 0 < t < τ , we have φt(p) ̸= p, then we say the orbit of p closed of
period τ . The set of all periodic points p for φ is denoted by Per (φ).

In general, flows can have plenty, few, or even none periodic orbits. Even in the simple
setting of Example 2, the orbits of point through the flow behave very differently depending on
the direction vector θ:

Proposition 1. Consider θ = (θ1, . . . , θn) ∈ Rn. If each θi is rational, say θi = pi
qi

with
pi, qi ∈ Z, qi ̸= 0 and gcd (pi, qi) = 1 for each i = 1, . . . , n, then each point x ∈ Tn is periodic.

Proof. Indeed, consider T = lcm (q1, . . . , qn). Then,

φT (x) = [x+ Tθ] = [x],

for all x ∈ Tn.

On the opposite direction of the above proposition, if α is an irrational number, then the
linear flow in the direction of θ = (α, 0, . . . , 0) has no periodic points: for each x ∈ Tn, the
orbit φt(x) remains in a vertical circle, on which the dynamics is an irrational rotation by α.
Hence, this linear flow has no periodic orbit. In fact, it can be shown that if the coordinates of
the direction vector θ = (θ1, . . . , θn) ∈ Rn are rationally independent, i.e., if for every k ∈ Zn

such that ⟨k, θ⟩ = 0 we have that k = (0, . . . , 0), then the flow φt is minimal: each of its orbits
is dense on Tn.

2.2 Foliations
This subsection has as its main objective to define foliations and to present their relation to

flows with certain regularity. In particular, we want to stress the fact that the orbits of the linear
flow on Tn produce a foliation with several dynamical properties of great interest.

Definition 1 (Foliation). Let M be a smooth manifold of dimension m. A Cr foliation of
dimension n in M is a Cr atlas F on M which is maximal with the following properties:

(a) If (U,φ) is a chart in F , then φ(U) = U1 × U2 ⊂ Rn × Rm−n where U1 and U2 are open
discs in Rn and Rm−n, respectively;

(b) If (U,φ) and (V, ψ) are charts in F such that U ∩ V ̸= ∅ then the change of coordinates
map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is of the form

ψ ◦ φ−1(x, y) = (h1(x, y), h2(y)),

where h1 and h2 are Cr diffeomorphisms with (x, y) ∈ (U1 ∩ V1)× (U2 ∩ V2).

Whenever M admits such an atlas F , we say that M is foliated by F , or that F is a foliated
structure of dimension n and class Cr on M , and call the charts (U,φ) ∈ F foliation charts.

Example 3. Our first example of foliation is the example o a foliation defined by a submersion.
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Let f : M → N , a Cr submersion between manifolds M and N of dimensions m and n,
respectively. Given a point p ∈M we can use the local form of the submersions to obtain local
charts (U,φ) onM and (V, ψ) onN , such that p ∈ U , f(p) ∈ V , φ(U) = U1×U2 ⊆ Rm−n×Rn,
and ψ(V ) = V2 ⊃ U2 and the composition ψ◦f◦φ−1 : U1×U2 → U2 has the form of a projection
π2 to second coordinate in Rm = Rm−n × Rn: ψ ◦ f ◦ φ−1(x, y) = y, as shown in Figure 2
below.

Figure 2: Local form of the submersions.

From that we obtain a Cr−foliation F of dimension n on M : for the foliated charts we
choose, for each point p ∈M , the chart (U,φ) which satisfies the local form of the submersions
with some local chart (V, ψ) over f(p).

To check that F is indeed a foliation we only need to see the condition of compatibility of
the charts: let (U,φ) and (Ũ , φ̃) be charts in F such that U ∩ V ̸= ∅. So we must prove that, on
φ(U ∩ Ũ), one can write:

φ̃ ◦ φ−1(x, y) = (h1(x, y), h2(y)).

In order to do that, pick p ∈ U ∩ Ũ and let (V, ψ) and (Ṽ , ψ̃) be charts on N over f(p) such
that, on φ(U ∩ Ũ) and on φ̃(U ∩ Ũ) we have:

ψ ◦ f ◦ φ−1
∣∣
φ(U)

= π2
∣∣
φ(U)

(1)

and
ψ̃ ◦ f ◦ (φ̃)−1

∣∣∣
φ̃(Ũ)

= π2
∣∣
φ̃(Ũ)

. (2)

Therefore, if we write φ̃ ◦ φ−1 : φ
(
U ∩ Ũ

)
→ φ̃

(
U ∩ Ũ

)
as

φ̃ ◦ φ−1(x, y) = (h1(x, y), h2(x, y)),
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we have:

h2(x, y) = π2 ◦ φ̃ ◦ φ−1(x, y)

= ψ̃ ◦ f ◦ φ̃−1 ◦ φ̃ ◦ φ−1(x, y) (by 2)

= ψ̃ ◦ f ◦ φ−1(x, y)

= ψ̃ ◦ ψ−1 ◦ ψ ◦ f ◦ φ−1(x, y)

= ψ̃ ◦ ψ−1 ◦ π2(x, y) (by 1)

= ψ̃ ◦ ψ−1(y),

meaning that we can write h2(x, y) simply as h2(y), as we wished. Hence, (U,φ) is a foliated
chart of the foliated structure F of dimension n and class Cr on M .

Definition 2. Given a Cr foliation F of dimension n on a m−dimensional smooth manifold M
(where 0 < n < m). Consider a local chart (U,φ) ∈ F such that φ(U) = U1×U2 ⊆ Rn×Rm−n.
We call the sets of the form φ−1(U1 × {c}), with c ∈ U2, the plaques of U (or of F).

A path of plaques of F is a sequence α1, . . . , αk of plaques of F such that αj ∩ αj+1 ̸= ∅
for all j ∈ {1, . . . , k − 1}. Moreover, since we can cover M by plaques of F , we can define the
following equivalence relation on M :

p ∼ q ⇐⇒ there exists a path of plaques α1, . . . , αk with p ∈ α1 and q ∈ αk.

The equivalence classes of the relation ∼ on M are called leaves of the foliation F .

Notice that, given a local chart (U,φ) ∈ F such that φ(U) = U1×U2 ⊆ Rn×Rm−n as above,
if we fix a point c ∈ U2, the map φ−1

∣∣
U1×{c} : U1 × {c} → U is a Cr embedding. Remembering

that U1 is a open disc, the plaques are path-connected n−dimensional Cr submanifolds of M .
Therefore, if p and q in M are in the same leaf of F , there is a path of plaques connecting

the two and, moreover, there is a continuous path connecting them because αj ∩ αj+1 ̸= ∅ for all
j ∈ {1, . . . , k − 1} and the plaques are path-connected.

Example 4. In Example 3 the leaves are the connected components of the level sets f−1(c),
where c ∈ N .

Example 5. Let f : R3 → R be a submersion defined by

f(x, y, z) = α(x2 + y2) · ez,

where α : R → R is a C∞ function such that α(1) = 0, α(0) = 1 and if t > 0 then α′ < 0.
Using the construction of the Example 3, let F be the foliation of R3 whose leaves are the

connected components of the submanifolds f−1(c), for c ∈ R.
The leaves of F are of three types, all ruled by the relation with the solid cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1},

in the following way:

(i) the boundary of C, i.e., ∂C = {(x, y, z) ∈ R3 | x2 + y2 = 1} is a leaf of F;
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(ii) outside C, i.e., on the set of points (x, y, z) ∈ R3 such that x2 + y2 > 1, the leafs of F are
all homeomorphic to cylinders;

(iii) finally, in the interior of C, i.e., on the set of points (x, y, z) ∈ R3 such that x2 + y2 < 1,
the leafs of F are all homeomorphic to R2 by a parametrization σ : D2 → R3 from the
disk D2 = {(x, y) ∈ R2 | x2 + y2 < 1} to R3, defined by:

σ(x, y) =

(
x, y, log

(
c

α(x2 + y2)

))
.

Figure 3: Example of foliation coming from a submersion.

The next example is the main example of this Section and has a very dynamical nature.

Example 6. Foliations arising from vector fields without singularities.

Let X be a Cr (r ≥ 1) vector field without singularities on a compact manifold M (with
dimM = m). As we have seen in Example 1, associated to X we have a flow φ(t, x) such that

X(φ(t, x)) =
∂φ(t, x)

∂t

for every (t, x) ∈ R×M .
Let i : Bm−1(0) → M be an embedding of a small m − 1 disk around 0 ∈ Rm, such that

i(0) = p, that is transverse to X everywhere. Since X(p) ̸= 0, for ε > 0, the map

Φ: Bm−1(0)× (−ε, ε) →M

defined by
Φ(x, t) = φ(t, i(x))

has maximal rank at (0, 0) ∈ Bm−1(0)× (−ε, ε).
By the Inverse Mapping Theorem, there is a neighborhood V ⊂ M around p such that

Φ−1
∣∣
V

is a diffeomorphism between V and a product neighborhood B̃m−1(0) × (−ε′, ε′) ⊆
Bm−1(0)× (−ε, ε) of (0, 0). This is a local chart for the one-dimensional foliation on M defined
by the curves t 7→ φt(x), the integral curves of X .

Therefore, from a regular vector X on M , we obtain a one-dimensional foliation F whose
leafs are the integral curves of X .
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Example 7 (Linear flow on Tn). A particular case of the previous example is the case where
M = Tn and X(x) = θ for all x ∈ Tn, where θ ∈ Rn.

From Example 2, we know that the solutions of the ODE dx
dt

= X(x) is φt(x) = [x + tθ].
Hence, in the particular case of the foliation obtained from X , the leafs are

Lx = {φt(x) | t ∈ R}.

Now, we briefly comment on how we could extend the relation between foliations on
manifolds M and higher dimensional analogs of vector fields.

Definition 3. A field of k−planes on a manifold M is a map P : M → Gk(TM)1 which
associates each point x ∈M a k−dimensional vector subspace P (x) ⊂ TxM . In the particular
case of k = 1, we call the map P a line field.

We say a k−plane field P on M is of class Cr if, for every q ∈M , there exist k vector fields
X1, . . . , Xk defined in a neighborhood V of q and of classCr, and such that {X1(x), . . . , Xk(x)}
is a basis for P (x) for every x ∈ V .

Definition 4. Given a k−plane field P on M , we call a submanifold N ⊂ M an integral
manifold of P if TxN = P (x) for every x ∈ N . We say P is integrable if there exists a foliation
F such that, for every point x ∈M there exists a leaf F(x) of F such that Tx (F(x)) = P (x).
Moreover, we say that P is uniquely integrable if the foliation above is unique.

Definition 5. We say a plane field P is completely integrable if, given two vector fields X and
Y such that, for each q ∈M , if X(q) and Y (q) are in P (q), then [X, Y ](q) ∈ P (q), where [·, ·]
is the Lie bracket on M .

Finally, we present a theorem of Frobenius that generalizes to plane fields the existence of
tangent foliations:

Theorem. Let P be a Cr k−plane field (for k ≥ 1) on M . If P is completely integrable, then
there exists a Cr foliation F of dimension k on M such that Tq(F) = P (q) for all q ∈ M .
Conversely, if F is a Cr (r ≥ 2) foliation and P is the tangent plane field to F , then P is
uniquely integrable.

3 Fubini Foiled
As explained in the Introduction, we are going to present an example of a measurable set E

on the square (0, 1)× [0, 1] and foliation of the same square such that the Lebesgue measure of
E is 1 but each leaf of E only intersects E at a single point. In this Section, we will follow [2]
closely.

To point out how weird this example seems at first sight, we recall Fubini’s Theorem
(following [9]):

Theorem 1 (Fubini). Let (X,A, µ) and (Y,B, ν) be two measure spaces and suppose ν is a
complete measure. Let f : X × Y → R be an integrable function with respect two the product
measure µ× ν. Then, for µ-almost every x ∈ X , the function f(x, ·) : Y → R is integrable over
Y with respect to ν and:∫

X×Y

fd(µ× ν) =

∫
X

(∫
Y

f(x, y)dν(y)

)
dµ(x). (3)

1Here Gk(TM) denotes the Grassmannian manifold of k−dimensional subspaces of TM .
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For the particular case of Rn, we may state the theorem with some additional information as
follows:

Theorem 2 (Fubini for Rn). For natural numbers n,m, and k, such that n = m+ k, consider:

• µi to be the Lebesgue measure on Ri, for i = n,m, k;

• φ : Rn → Rm × Rk the function defined by

φ(x1, . . . , xn) = ((x1, . . . , xm), (xm+1, . . . , xn)) ∈ Rm × Rk,

for every (x1, . . . , xn) ∈ Rn.

Then, a function f : Rm × Rk → R is measurable with respect to the product measure
µm × µk if, and only if, f ◦ φ is measurable with respect to the Lebesgue measure µn. Moreover,
if f is integrable over Rn with respect to the Lebesgue measure µn, then∫

Rn

fdµn =

∫
Rn

(∫
Rn

f(x, y)dµm(x)

)
dµk(y). (4)

So, for example, consider the foliation F of the open unite square I2 = (0, 1)2 by horizontal
lines, i.e., each leaf Lα of F is Lα = (0, 1) × {α} for α ∈ (0, 1). If we call m the Lebesgue
measure of U , and mα the Lebesgue measure restricted to each leaf Lα, we would be able to
apply Fubini to write, for every measurable set E ⊂ U , the following characterization of the
measure m:

m(E) =

∫
I2
χEdm =

∫
I

(∫
Lα

χE(z)dmα(z)

)
dα,

where χE is the characteristic function of the set E.
Next, we could ask for more generality: suppose F is a foliation of the open unit square I2

by curves Lα that we assume to be graph of smooth functions ϕα : I → I , i.e.,

Lα = {(x, ϕα) | x ∈ I}.

Can we do the same? If we ask for regularity, the answer is still yes.
More precisely, define the map Φ: I2 → I2 by Φ(x, y) = ϕy(x). Clearly, if we fix y and

vary x we get the leaf Ly of F , so that the foliation F is the image of the foliation of I2 by
horizontal lines under the map Φ. If the map Φ depends smoothly on x and y, then we have
a smooth foliation. Notice that this is not a vacuous assumption since, at this point, we only
have asked that the leaves of the foliation are smooth, and hence that Φ depends smoothly on x.
However, we haven’t said anything about the dependence on y, i.e., on the transverse direction:
Φ could not depend smoothly on it. But indeed, if we ask that Φ depends smoothly on x and y,
then we have a smooth foliation, not only smooth leaves. As a consequence, we can write, by a
variation of Fubini’s Theorem on this setting, that the measure of any measurable set E ⊂ I2

can be written as

m(E) =

∫
I

(∫
Lα

ρα(z) · χE(z)dmα(z)

)
dα,

for a L1(mα) density ρα : Lα → R that can be determined in terms of the derivative of Φ.
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Indeed, if we call J the Jacobian determinant of Φ(x, y) = (x′, y′), Fubini’s Theorem tells
us that

m(E) =

∫
I

∫
I

1

J(x, y)
· χE(x, y)dx

′dy′.

Next, let Jα be the Jacobian derivative of Φ
∣∣
Wα

and hence dx′ = Jα · dmα. Also, observe that
Φ(Wα) = (0, 1)× {y(α)} where α 7→ y(α) is differentiable, and then dy′ = y′(α)dα. So, if we
set ρα = Jα·y′

J
, we get the desired formula.

So we now know that in the regular case, we can still apply Fubini in some sense: however,
we had to ask on regularity not only in the x direction but also in the y direction in the above
example. It is on this “gap” of non-smoothness dependence on the transverse direction that we
construct the example.

3.1 Construction of the example
For each p ∈ (0, 1) consider the map fp : [0, 1] → [0, 1] defined by:

fp(x) =

{
x
p

if x ∈ I0(p) := [0, p)
x−p
1−p

if x ∈ I1(p) := [p, 1]
. (5)

Observe that fp(0) = 0 and fp(1) = 1 for p ∈ (0, 1). So, if we make identify the closed interval
with the circle R/Z, we can still define fp, now from R/Z to itself. We are going to be thinking
about R/Z from now on.

Claim. The function fp preserves the Lebesgue measure m on R/Z. Moreover, the pair (fp,m)
is measure-theoretic conjugated to the pair (σ, µp), where σ : Σ → Σ is the shift map over
Σ = {0, 1}N and µp is the (p, 1− p)-Bernoulli measure on Σ.

Proof. To see that fp, consider a measurable set J ⊂ R/Z. Then, since f−1
p (J) = J0 ∪ J1

is the union of two disjoint intervals J0 ⊂ I0(p) of length p ·m(J) and J1 ⊂ I1(p) of length
(1− p) ·m(J), we conclude:

m(f−1
p (J)) = m(J0 ∪ J1) = p ·m(J) + (1− p) ·m(J) = m(J).

In order to define the conjugacy map between fp and σ, we first observe that associated to
each x ∈ R/Z there exists a unique sequence (bn)n∈N defined by its orbit via fp, i.e., if we set
xn = fn

p (x), then we define the sequence (bn)n as

bn =

{
0 if xn ∈ I0(p)

1 if xn ∈ I1(p)
. (6)

Since the points p and 1 are sent to the same sequence, it is indeed more convenient to work with
R/Z instead of [0, 1]. So we define the conjugacy map πp : R/Z → Σ by πp(x) = (bn)n. This is
a bijection that preserves measure, since for every measurable set A ⊂ Σ, we have m(π−1

p (A)) =
µp(A). Indeed, since the cylinders [i : 0] = {(bn)n | bi = 0} and [i : 1] = {(bn)n | bi = 1}
generates the σ-algebra of Σ and since we have

m(π−1
p ([i : 0])) = m

(
f−i
p ([0, p)

)
= m([0, p)) = p = µp([i : 0]),

and
m(π−1

p ([i : 1])) = m
(
f−i
p ([p, 1]

)
= m([p, 1]) = 1− p = µp([i : 1]),

we conclude πp preserves measure.
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Figure 4: The graph of the function fp.

3.1.1 Construction of the set

Now we construct the full measure set E we promised. Until now we were only dealing with
the Lebesgue measure on R/Z and calling it m. But since E is going to be a measurable set of
(0, 1)× R/Z, we will call m the Lebesgue measure on (0, 1)× R/Z, m1 the Lebesgue measure
on (0, 1), and m2 the Lebesgue measure on R/Z.

For a fixed x ∈ R/Z, consider the number of iterates f i
p(x) that enters the set I1(p). In an

equivalent way, for a fixed x ∈ R/Z, consider the number of times the number 1 appears in the
sequence (bn)n associated with the orbit of x by fp. By the Law of Large Numbers, the frequency
of those 1′s converges to the measure of the interval I1(p) for Lebesgue almost every x ∈ R/Z:

lim
n→∞

#{0 ≤ i ≤ n− 1 | f i
p(x) ∈ I1(p)}

n
= 1− p,

for m-every x ∈ R/Z.
Now, define the set E ⊂ (0, 1)× R/Z by:

E =

{
(p, x) ∈ (0, 1)× R/Z | lim

n→∞

#{0 ≤ i ≤ n− 1 | f i
p(x) ∈ I1(p)}

n
= 1− p

}
. (7)

Proposition 2. The set E defined by (7) is a measurable subset of (0, 1) × R/Z and has full
measure, i.e., m(E) = 1.

Proof. To see that E is measurable, define the map F : (0, 1) × R/Z → (0, 1) × R/Z by
F (p, x) = (p, fp(x)), and the consider the measurable set A = {(p, x) ∈ (0, 1)×R/Z | x ≥ p}.
Also define, for each n ∈ N, a function βn : (0, 1)× R/Z → R by

βn(p, x) = #{0 ≤ i ≤ n− 1 | F i(p, x) ∈ A}.

This is a measurable function since F and A are, and βn = χA + χA ◦ F + · · · + χA ◦ F n−1.
Now, one has just to observe that

E =
∞⋂

m=1

∞⋃
N=1

∞⋂
n=N

β−1
n (n (1− p−m) , n (1− p+m)) ,
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so that E is indeed a measurable subset of (0, 1)× R/Z.
Since E is a measurable set, we can calculate its measure using Fubini’s Theorem: if we call

Lp the leaves of the foliation of (0, 1)× R/Z by horizontal lines, i.e., each Lp is the horizontal
circle p× R/Z, then

m(E) =

∫
(0,1)

∫
p×Lp

χE(p, x)dm2(x)dm1(p) =

∫ 1

0

m2(E ∩ Lp)dm1(p) = 1,

since m2(E ∩ Lp) = 1.

3.1.2 Construction of the foliation

The idea is to construct a foliation F by smooth curves Lα in such a way that two points
(p, x) and (q, y) belong to the same leaf Lα if and only if they have the same sequence expansion
in Σ, i.e., πp(x) = πq(y).

The precise construction goes as follows: given α ∈ R/Z let a = (an)n be its binary
expansion, i.e., a = π1/2(α) and α =

∑∞
n=1 an/2

n. Define

Lα = {(p, x) ∈ (0, 1)× R/Z | πp(x) = a},

for each α ∈ (0, 1).

Claim 1. The family {Lα}α forms a partition of (0, 1)× R/Z:

• if α ̸= β then Lα ∩ Lβ = ∅;

• (0, 1)× R/Z =
⋃

α Lα.

Proof. Consider α, β ∈ (0, 1) and suppose a = (an)n and b = (bn)n to be such that a = π1/2(α)
and b = π1/2(β). If we have a point (p, x) ∈ Lα ∩ Lβ, then we would have πp(x) = a and
πp(x) = b, i.e., ai = bi for every i. Since the binary expansion is unique, this implies α = β.
Therefore, if α ̸= β we must have Lα ∩ Lβ = ∅.

Next, we prove (0, 1)× R/Z =
⋃

α Lα. Since the direction (0, 1)× R/Z ⊇
⋃

α Lα is trivial,
we prove the other one: let (p, x) be a point in (0, 1) × R/Z. We need to find an α such that
πp(x) = a. But is straightforward, since if we pick the sequence πp(x) = (ãn)n of 0′s and 1′s,
there is an α̃ such that its binary expansion is (ãn)n, namely α̃ =

∑∞
n=1 ãn/2

n.

Claim 2. For each α there exists a real analytic function ϕα : (0, 1) → R such that Lα is the
graph of ϕα, i.e.,

Lα = {(p, ϕα(p)) | p ∈ (0, 1)}.

Proof. Fix a pair (p, x) ∈ Lα (i.e., πp(x) = a). Call ϕα(p) = x and define (xn)n inductively by
setting x1 = x and xn+1 = fp(xn), so that xn ∈ Ian(p) for all n ∈ N. Hence,

xn+1 =

{
xn

p
if an = 0

xn−p
1−p

if an = 1
.

If we write, p(0) = p and p(1) = 1− p, the relation between xn+1 and xn can be stated as:

xn+1 =
xn − anp(0)

p(an)
,
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so that xn = anp(0) + p(an)xn+1.
This relation allow us to write x = ϕα(p) in terms of the sequence (an)n. Indeed,

ϕα(p) = x = x1 = a1p(0) + p(a1)x2

= a1p(0) + p(a1) (a2p(0) + p(a2)x3)

= p(0) (a1 + p(a1)a2) + p(a1)p(a2)x3

= p(0) (a1 + p(a1)a2 + p(a1)p(a2)a3) + p(a1)p(a2)p(a3)x4,

and so on. If we define ψn(p) = p(a1)p(a2) · · · p(an−1), we will obtain the following formula
for ϕα(p):

ϕα(p) = p(0)
∞∑
n=1

ψn(p)an. (8)

Observer that for each N , the function ΨN = p(0)SumN
n=1ψn(p)an is analytic on p, and that

for every small ε > 0, the sum converges uniformly on the interval [ε, 1− ε] (indeed, for every
p ∈ [ε, 1 − ε], we have ψn(p) ≤ (1 − ε)n). Evermore, this convergence extends to complex
values of p in the disk of center (1/2,0) and radius 1/2− ε in the complex plane. Therefore, by
Weierstrass’ uniform convergence theorem, we conclude the function ϕα is analytic in p.

Claim 3. For each α, the leaf Lα intersects E in at most one point.

Proof. Indeed, fix α and suppose (p, x) and (q, y) are both in E ∩ Lα. Since they are both in E,
we must have:

lim
n→∞

#{0 ≤ i ≤ n− 1 | f i
p(x) ∈ I1(p)}

n
= 1− p,

and

lim
n→∞

#{0 ≤ i ≤ n− 1 | f i
q(y) ∈ I1(q)}

n
= 1− q.

On the other hand, we know that if (kn)n = πp(x) is the sequence associated to x by the orbit of
fp and (ℓn)n = πq(y) is the sequence associated to y by the orbit of fq, then

1− p = lim
n→∞

#{0 ≤ i ≤ n− 1 | f i
p(x) ∈ I1(p)}

n
= lim

n→∞

#{0 ≤ i ≤ n− 1 | ki = 1}
n

,

and

1− q = lim
n→∞

#{0 ≤ i ≤ n− 1 | f i
q(y) ∈ I1(q)}

n
= lim

n→∞

#{0 ≤ i ≤ n− 1 | ℓi = 1}
n

.

On the other hand, since (p, x) and (q, y) both belong to Lα, we must have πp(x) = πq(y) =
a, where a = (an)n is the sequence π1/2(α) as stated above. Then, ki = ℓi for all i ∈ N, and so

lim
n→∞

#{0 ≤ i ≤ n− 1 | ki = 1}
n

= lim
n→∞

#{0 ≤ i ≤ n− 1 | ℓi = 1}
n

,

implying 1 − p = 1 − q. Therefore, we must have p = q. Next, we use the fact that, fixed
p ∈ (0, 1), the map πp is a bijection: since p = q and ki = ℓi for all i, we conclude that
πp(x) = (kn)n = (ℓn)n = πq(y) and also that πp(x) = πq(y) = πp(y), so x = y and (p, x) and
(q, y), as desired.2

2Notice, however, that the sequence of 1′s in α could not be defined (it is only defined almost everywhere). In
this case, Lα not even intersects E.

13



3.1.3 How about the regularity of the foliation?

Until now, we have only proved assertions about the regularity of the leaves. However, what
can we say about the regularity of the foliation itself?

At the beginning of Section 3 we explained that if the foliation is in some sense regular, the
above weird example cannot occur. In fact, if the foliation is of regularity C1, a foliated chart
will send the Lebesgue measure to a measure that is absolutely continuous with respect to the
Lebesgue measure (and we can show that things must behave well in the sense of these notes).

The problem with the foliation we have just constructed is that it is only continuous: one can
prove that the map (p, α) 7→ (p, ϕα(p)) maps (0, 1)× R/Z homeomorphically onto itself.

In conclusion, we found aC0-foliation F of (0, 1)×R/Z by analytic leaves, and a measurable
set E ⊆ (0, 1)× R/Z such that each leaf of F intersects E in at most one point.
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